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Motivation



[Mallory, 1974; Lavrenov, 1998]

Gaastekerk (Apr’52)
Oranjefontain (Sep’53)
Jagersfontain (Dec’59)
Edinburgh Castle (Aug’64)
World Glory (Jun’68)
Esso Lancashire (Aug’68)
Clan Maclay (Oct’69)
Southern Cross (Oct’69)
Moreton Bay (Aug’71)
Bencruachan (May’73)
Svealand (Sep’73)
Taganrogsky Zaliv (Apr’85)

Suez Canal was closed for 1967-1975, what caused more intense navigation 
along the coast of Africa.

Rogue waves on Agulhas current 3

South Africa



Rogue waves on Agulhas current 4

12 large accidents with ships in the region of a 
strong Agulhas current. All accidents occurred close 

to the maximum of the current
There were coexisting different wave systems.
Waves were propagating against the current.



[White & Fornberg, 1998]

[Lavrenov, 1998] [Chawla & Kirby, 2004]

Mechanisms of wave intensification on currents 5

Wave blocking effect, focal zones and caustics, trapped waves. Ray approach



Mechanisms of wave intensification on currents 6

Linear models
● Peregrine & Smith (CambPhilSoc’75, RoySoc’79), Peregrine (AdvApplMath’76), Smith 
(JFM’76): trapped modes, dispersion relations, ray theory, caustics, nonlinear effects on 
caustics
● Lavrenov (NatHaz’98): rays on a jet current, simulations, Agulhas current conditions
● White & Fornberg (JFM’98): statistics for random current fluctuations: a single universal 
curve

NLS models: longitudinally inhomogeneous weak opposite currents
● Smith JFM1976, Turpin et al, JFM 1983, Gerber JFM 1987, Stocker & Peregrine JFM 1999, 
Hjelmervik & Trulsen, JFM 2009, Onorato et al, PRL 2011: increase of wave steepness 
triggers BF instability and strong departure from Gaussianity

DNS (strongly nonlinear)
● TT Janssen et al (JFM’06), TT Janssen & Herbers (JPO’09), Moreira & Peregrine (JFM’12): 
the increase of steepness on opposing current leads to BF instability, etc. Non-NLS features:
(i) formation of trapped waves. (ii) broad spectrum after the increase of kurtosis.

Observations
● Kudryavtsev et al (JGR 95) observed trapped wind waves on the Gulfstream



Advantage of the modal approach 7

Conventional theoretical approaches are not adequate for describing nonlinear wave 
interactions:

(i) It is implicitly assumed that the nonlinear interactions remain the same and adjust 
adiabatically, what requires the characteristic scale of nonlinear interactions Lnl > ε –2λ (ε = 
ka ~< 0.1 is the wave steepness, λ = 2π/k >~ 100 m is the wave length) be much smaller 
that the scale of inhomogeneity Linh :  Linh >> Lnl > 10 km.

For the kinetic nonlinear scale Lkin > ε –4λ the condition is Linh >> Lkin > 1000 km.

(ii) Wave refraction occurs in x-space, while nonlinear interactions ‘live’ in the k-space.
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If  the jet current is longitudinally uniform, then the solutions to linearized equations of 
hydrodynamics for water waves may be always presented in a separable form: as waves 
propagating along the current with some `modal' dependence on the vertical and 
transverse variables.

Trapped modes differ qualitatively from the 
free waves. This fact profoundly changes all 
aspects of their nonlinear dynamics.



Modulational instability of oceanic waves 8

There is crucial difference in wave statistics between the 1D evolution and 2D 
evolution [Onorato et al, PhysFl’02, PRL’09; Waseda, 06; Gramstad & Trulsen, JFM’07, 
Mori et al, JGR’07].

[Muller et al, 2005]
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The surface displacement η(x,t) can be calculated using the reconstruction formula η(x,t) = Re[A
exp(iω0 – k0t)], where ω0 = ω(k0) according to the dispersion relation. 

The weakly nonlinear theory for long wave 
modulations employs the assumptions of small wave 
steepness k0a = O(ε), ε << 1 and narrow spectral 
bandwidth  ∆k/k0 = O(ε). The coefficients of the 
evolution equation are functions of the scaled water 
depth k0h.
The nonlinear Schrodinger equation (NLS) for the 
complex wave envelope A(x,t) takes into account the 
leading-order terms of nonlinearity and dispersion. In 
the deep-water limit of the planar geometry it reads

[Benney & Newell, 1967; Zakharov, 1968; Hasimoto & Ono, 1972; Zakharov & Shabat, 1972]

The NLS equation is integrable by means of the Inverse Scattering Transform (IST). Higher order 
generalizations of the evolution equation may be derived, which are not integrable.



There is crucial difference in wave statistics between the 1D evolution and 2D 
evolution [Onorato et al, PhysFl’02, PRL’09; Waseda, 06; Gramstad & Trulsen, JFM’07, 
Mori et al, JGR’07].

[Muller et al, 2005]

02 2 =+−+ qqqqiq yyxxt

The 2+1D NLS for deep-water gravity waves 
possesses the property of focusing for longitudinal 
modulations and de-focusing for transverse 
modulations.

Modulational instability of oceanic waves 9



Modulational instability of oceanic waves 10

Development of the modulational instability



There is crucial difference in wave statistics between the 1D evolution and 2D 
evolution [Onorato et al, PhysFl’02, PRL’09; Waseda, 06; Gramstad & Trulsen, JFM’07, 
Mori et al, JGR’07].

[Muller et al, 2005]

Waves trapped by jet currents => 
described in modal representation

Effectively unidirectional nonlinear wave evolution

Increase of rogue wave likelihood 
due to nonlinear self-modulation effects

02 2 =+−+ qqqqiq yyxxt

The 2+1D NLS for deep-water gravity waves 
possesses the property of focusing for longitudinal 
modulations and de-focusing for transverse 
modulations.

The idea is:

Currents: Smith‘70; Peregrine&Smith‘75; Basovitch‘81; Edge waves: Dubinina et al,‘05, ‘06; Pelinovsky et al,‘10

Modulational instability of oceanic waves 11



Asymptotic modal theory



Basic equations 13
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Euler equations for incompressible ideal fluid 
with the current

and flow velocity components associated with 
the wave motion: ( Uuv ,+=



Water bulk z ≤ η :

Surface BC z = η :

Bottom BC :

0=
∂
∂

+
∂
∂

+
∂
∂

z
w

y
v

x
u



Waves propagate predominantly along the Ox horizontal axis opposite to the current 
with the longitudinal wavenumber k > 0 and frequency ω. 

The small parameter ε << 1 which has the meaning of the wave steepness will 
characterize weak nonlinearity of the wave motions.

Linear modal theory 14

( ) ( ) ( )ikxtiyAtyx −= ωεη exp,,

( ) ( ) ( )ikxtizyutzyxu −= ωε exp,ˆ,,,
( ) ( ) ( )ikxtizyvtzyxv −= ωε exp,ˆ,,,
( ) ( ) ( )ikxtizywtzyxw −= ωε exp,ˆ,,,

( ) ( ) ( ) gzikxtizyPtzyxP −−= ωε exp,ˆ,,,

Surface displacement:

Wave velocity components:

Excess pressure with respect to the rest condition:

Hydrodynamic fields taking into account 
the leading-order (linear) wave 
perturbations O(ε):



2D BVP 15

The governing equations may be reduced to the 2D boundary value problem (BVP) 
following either of the two approaches:
1) The velocity components may be expressed in terms of the pressure from x-, y- and 
z-projections of the Euler equations. Then, the continuity equation yields the BVP on 
the pressure.
2) Combinations of derivatives of the Euler equation projections of the form 

may be used to obtain the BVP (of a slightly different form) on the vertical velocity.

The second method yields the 2D nonlinear BVP on the function Φ(y,z) and 
eigenfrequencies ω assuming that the longitudinal wavenumber k is given:
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The function Φ(y,z) has similarity with 
the velocity potential:

The function Ω(y) = ω – kU(y) characterizes 
the local Doppler shift.

First appeared in [Basovitch1981]



Reduction to 1D BVP 16

The 2D BVP may be solved numerically, treating the condition in the water bulk as a 
weakly perturbed Helmholtz equation:
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The 2D BVP may be reduced to 1D BVP under some extra assumptions like weak 
current (γ << 1) or broad current (µ << 1), where 

An approximate separation of variables is implied:
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If the current is absent, then Z = exp(zω2/g), F = exp(ikyy), and we have the linear 
dispersion relation for deep-water waves: ω4 =g2(k2 + ky

2).
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If γµ << 1 , the dependence of F on z may be neglected: F(y,z) ≈ Y(y).



Waves propagate predominantly along the Ox horizontal axis opposite to the current 
with the longitudinal wavenumber k and frequency ω. Within the linear 
approximation, boundary-value problem (BVP) may be formulated for the wave 
structure in the transverse direction Oy [Shrira & Slunyaev, JFM2014]:
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Assumption of a broad current

Assumption of a weak current (Sturm-Liuoville BVP)

Eigenmodes of the Sturm-Liouville (SL) problem form the full orthogonal basis. 
At least one trapped mode exists if kU < 0 for all y.

1D BVPs 17

Shrira & Slunyaev, JFM2014]Shrira & Slunyaev, JFM2014]Shrira & Slunyaev :

First appeared in [Peregrine & Smith, 1975]

Decaying and non-decaying conditions at y → ±∞
specify trapped and passing-through modes, respectively. Eigenfrequencies ω and 
eigenfunctions Y(y) determine the modes. One eigenvalue corresponds to one 
eigenmode. Trapped modes correspond to the discrete spectrum which may exist only 
for opposite currents, kU < 0, and may have the values ωg + min(kU) < ω < ωg. 
Eigenfunctions are generally not orthogonal.



sech-squared

parabolic top-hat

max|U| = 2 m/s, 
characteristic width of the jet is 200 m

Dispersion relations for modes 18

For some particular shapes of the jet 
current the dispersion relations (solutions 
of the Sturm-Liouville problem) can be 
found analytically.



Weakly nonlinear theory:

1) three-mode interactions



Allowed nonlinear wave resonances 20

21 ++ kkk
21 ++ ωωω 2 <ω

2 <k

Weak current. 
The wave 3 is long.

Strong current 
|kU|/ω > 0.3

Three-wave resonant conditions become possible for waves trapped by jet currents, if 
one of the waves is sufficiently long or the current is sufficiently strong.

Resonant conditions for a mode triad:

Resonant conditions for quartets of modes are allowed too.



3-wave interaction theory 21

Assuming that the effect of nonlinearity is small, we introduce the parameter ε << 1
and use the asymptotic series for all hydrodynamic fields, 

To allow the mode evolution and to account the large lateral scale of the current and 
related fields, we use slow time and coordinates: t → t0 + εt1, x → x0 + εx1, y → y0 + 
εy1. At this stage one has to set relations between small parameters and scales. It is 
more convenient to derive the nonlinear theory for the variable of pressure.
After calculations, the equation in the nonlinear order O(ε2) for mode Y1(y0) (for a 
broad current the dependence of modes on y is fast) has the form:
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3-wave interaction theory 22

21 ++ kkk
21 ++ ωωω 2 <ω

2 <k

The evolution equation on the amplitude A1(x,t) of three resonantly interacting modes 
may be written in the simplest form as
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The equations on modes A2 and A3 are obtained by permutation of the indices (1,2,3). 
The derivation of this theory is not potential, but the resulting equation coefficients do 
not depend on vorticity. The nonlinear interaction coefficient is valid for strong 
currents. The 3-wave system is completely integrable.
In the limit of a weak current γ << 1 (one of the wave is very long) the equation on the 
short wave reads:
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3-w nonlinear effects weaken 
when the current becomes weaker



Weakly nonlinear theory:

4 – four-mode interactions



4-wave interaction theory 24

321 kkk =+
321 ωωω =+

The picture of possible nonlinear interactions between 
quartets of modes is rich. Under the assumption of a weak 
current, the potential theory for water motions may be used, 
what greatly simplifies the derivation.
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4-wave interaction theory 25

321 kkk =+
321 ωωω =+

The picture of possible nonlinear interactions between 
quartets of modes is rich. Under the assumption of a weak 
current, the potential theory for water motions may be used, 
what greatly simplifies the derivation.
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Example of a top-hat current
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The nonlinear Schrodinger equation (NLSE) for a single mode accounting for 4-wave 
nonlinear interaction within the non-potential theory for a broad current reads

The equation describes a mode with frequency ω and corresponding mode Y(y).
The coefficients are valid for a broad but may be strong current. 

The coefficients may be further simplified assuming that the V(y), α(y) and β(y) are 
slower functions of the transverse coordinate than the mode Y(y).

In the limit of a weak current the coefficients are greatly simplified too, and the 
potential theory may be applied. 

NLSE for one trapped mode 26
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The nonlinear Schrodinger equation (NLSE) for a single mode accounting for 4-wave 
nonlinear interaction was presented in [Shrira & Slunyaev, PRE2014] (derived within 
the potential framework):

NLSE for one trapped mode 27
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The coefficients are valid for a weak current. 
The corresponding surface displacement reads:

( ) ( ) ( ) ( ) ..exp,
2
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The general solution may be represented in the form of mode superposition relying on 
the orthogonality property of the Sturm-Liouville problem eigenfunctions.



Numerical scheme
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We simulate homogeneous inviscid water of the constant density under the action of 
gravity force. The basin is infinitely deep.
The jet current flows along the Ox horizontal coordinate and depends on the 
transverse coordinate y only: U=(U(y),0,0).
The fluid motions are assumed to be potential, so that the velocity v = (u,v,w) = 
U + ∇ϕ(x,y,z,t). At the free surface z = η(x,y,t) the surface velocity potential is defined 
by  Φ(x,y,t) = ϕ(x,y,z=η,t).
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Equations of hydrodynamics 29



When waves are absent, ϕ = 0, the stationary condition with zero elevation, η = 0, is 
supported by inhomogeneous distribution of the pressure on surface:

aPPP +=
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2
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The atmosphere pressure is assumed to be zero, Pa = 0.

Integrals of motion
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Rest conditions 30
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The High Order Spectral Method [West et al., 1987] has been modified to simulate the 
problem. Within this approach the problem with variable surface is replaced to the 
one with the upper boundary defined by the rest water level η = 0. The velocity 
potential is represented in the form of a linear superposition of the analytic solutions 
of the Laplace equation with decaying condition at great depths and specified values 
at the water rest level ϕ(x,y,z=0,t). The surface velocity potential Φ(x,y,t) and the 
vertical velocity on the water surface w(x,y,z=η,t) are related to the values ϕ(x,y,z=0,t)
using the Taylor expansions near z=0 of the order M.

( )

∑
−

= =
+

−+

∂
∂

=
1

0 0
1

1
)(

!

m

k z
k

kmkk
m

zk
w ϕη

∑
=

=
M

m

m

1

)(ϕϕ ( ) Φ=1ϕ ( )
( )

∑
−

= =

−

∂
∂

−=
1

1 0!

m

k z
k

kmkk
m

zk
ϕηϕ

∑
=

=
M

m

mww
1

)(

Velocity potential

Vertical velocity

The boundary conditions are periodic along Ox and Oy. 
The simulations were performed for M = 3 and M = 4 (up to 4- and 5-wave interactions 
were resolved). 
The maximum deviation of the total energy is below 0.05%.

Numerical approach 31



Results of numerical simulations



DNS of a uniform trapped wave 
(fundamental mode)

Examples of regular and modulated waves 33

Modulational instability of a weakly 
modulated trapped wave 

(fundamental mode)

Terminal stage of the modulational instability 
leading to wave overturning






The nonlinear Schrodinger equation possesses exact solutions in the form of envelope 
solitons:
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The idea is that:
i) the self-modulation effect is not relaxed 
due to the transverse wave de-modulation; 
coherent structures like solitons live longer;
ii) long-lived coherent structures result in 
greater probability of high waves.
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Example of a soliton of fundamental mode
with the steepness kA = 0.2

Ini. condition – Envelope soliton of trapped waves34

dispersive 
spreading



Envelope solitons on jet currents 35

Fundamental mode (n = 1) Firth mode (n = 5)

The initial conditions according to the weakly 
nonlinear analytic theory are simulated 
within the Euler equations (HOSM)
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A periodic current shape is used to fit 
the periodic boundary condition:

where K(s2) is the complete elliptic integral of the first kind with the parameter s = 0.9; 
the current speed is U0 = –2 m/s.
The current and modes for k = 0.05 rad/m (left) and k = 0.1 rad/m (right):

The jet current in the numerical simulations 36



k1 = 0.05 rad/m, k2 = 0.1 rad/m, k1A1 = k2A2 = 0.2. 
Wave periods according to the solution of the SL problem: T1 = 10.3 s, T2 = 7.9 s.

Integral mode amplitudes:
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Sturm-Liouville BVP for k = 0.05 rad/m 

Interaction between solitons of fundamental mode37



Small-amplitude waves are generated by the 
inaccurate initial condition and in the course 
of the soliton collision.

In these surface snapshots the displacements 
are 10 times magnified.

Generated solitary patters have somewhat 
smaller steepness than initially, in the range 
kA = 0.14…0.18.

Interaction between solitons of fundamental mode38



k1 = 0.05 rad/m & n1 = 2, k2 = 0.1 rad/m & n2 = 1, k1A1 = k2A2 = 0.2.
Wave periods according to the solution of the SL problem: T1 = 10.0 s, T2 = 7.9 s.

Second mode and fundamental mode
Integral mode amplitudes 
for k = 0.05 rad/m 

Interaction between solitons of different modes 39
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k1 = 0.05 rad/m & n1 = 3, k2 = 0.1 rad/m & n2 = 1, k1A1 = k2A2 = 0.2.
Wave periods according to the solution of the SL problem: T1 = 9.8 s, T2 = 7.9 s.

Integral mode amplitudes 
for k = 0.05 rad/m 

Third mode and fundamental mode

Interaction between solitons of different modes 40
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The maximum displacements as functions of time in the simulations of interacting 
solitons and in reference simulations of single solitons. 

Two solitons of 
fundamental modes

Second mode and 
fundamental mode

Third mode and 
fundamental mode

Maximum displacements 41



The solution [Peregrine, 1983; Akhmediev & Ankiewicz, 1993] describes interaction of 
two NLSE envelope solitons with identical amplitudes and velocities.
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The solution tends to two envelope solitons with amplitudes A = a/I when t → ±∞ and 
reaches at most twice larger amplitude 2A at t = 0 and x = 0.

This is the longest possible interaction 
scenario for two solitons, which 
should reveal non-integrable features 
of the interaction.

Degenerate 2-soliton NLSE solution 42



k = 0.05 rad/m & n = 1, kA = 0.15.
The wave period according to the solution of 
the SL problem: T = 10.3 s, V = 4.98 m/s.

Energy of the fundamental mode is partly 
transferred to other modes due to the 
imperfectly elastic collision

Degenerate 2-soliton solution: simulation 43
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The numerical simulations of primitive 
equations reproduces the stages of 
solitons’ approach, generation of 
large-amplitude waves and then 
repulsing and consequent propagation 
as isolated pulses.
However, the symmetry of the 
interaction is lost. The leading soliton 
obtains greater amount of energy.

 |ψ|

 |H{b1}|

mode n = 1
k=0.05 rad/m
kA=0.15

Maxima of |ψ| and |H{b1}|

Degenerate 2-soliton solution: simulation 44



❶ Trapped wave conditions represent a unique situation of surface water waves when the 
defocusing effect in the transversal direction is cancelled. Then the requirement on the 
small width of the angular spectrum for modulationally unstable waves is greatly relaxed, 
what can cause higher probability of rogue wave generation in ordinary sea conditions.
❷ The NLSE envelope solitons are structural elements of the coherent nonlinear wave 
dynamics which are involved in the modulational instability scenarios related to the 
generation of rogue waves. These long-lived groups exhibit own non-trivial dynamics; its 
understanding may be used for elaboration of warning criteria. 
❸ We show that the dynamics of waves trapped by jet currents may be effectively 
described within the mode approach, which allows the formulation of simplified theories, 
including approximate analytic solutions. Modes can preserve energy for hundreds of wave 
periods.
❹ Envelopes solitons of trapped waves are stable structures, which can propagate for 
hundreds of wave periods with no noticeable loss. They interact to a great extent elastically
and may cause rogue waves.
❺ A number of specific physical mechanisms related to adiabatically slow or rapid 
variation of the surrounding conditions may be suggested as possible mechanisms of wave 
amplification and generation of rogue waves.

Conclusions 45
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