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Motivation



Rogue waves on Agulhas current ’

Suez Canal was closed for 1967-1975, what caused more intense navigation
along the coast of Africa.
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Rogue waves on Agulhas current !

12 large accidents with ships in the region of a
strong Agulhas current. All accidents occurred close
to the maximum of the current
There were coexisting different wave systems.
Waves were propagating against the current.
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Mechanisms of wave intensification on currents °

Wave blocking effect, focal zones and caustics, trapped waves. Ray approach
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[Lavrenov, 1998] [Chawla & Kirby, 2004]



Mechanisms of wave intensification on currents °

Linear models

® Peregrine & Smith (CambPhilSoc’75, RoySoc’79), Peregrine (AdvApplMath’76), Smith
(JEM’76): trapped modes, dispersion relations, ray theory, caustics, nonlinear effects on
caustics

e Lavrenov (NatHaz'98): rays on a jet current, simulations, Agulhas current conditions

e White & Fornberg (JFM’98): statistics for random current fluctuations: a single universal
curve

NLS models: longitudinally inhomogeneous weak opposite currents

® Smith JFM1976, Turpin et al, JFM 1983, Gerber JFM 1987, Stocker & Peregrine JFM 1999,
Hjelmervik & Trulsen, JFM 2009, Onorato et al, PRL 2011: increase of wave steepness
triggers BF instability and strong departure from Gaussianity

DNS (strongly nonlinear)

® TT Janssen et al (JFM’06), TT Janssen & Herbers (JPO’09), Moreira & Peregrine (JFM’12):
the increase of steepness on opposing current leads to BF instability, etc. Non-NLS features:
(i) formation of trapped waves. (ii) broad spectrum after the increase of kurtosis.

Observations
e Kudryavtsev et al (JGR 95) observed trapped wind waves on the Gulfstream



Advantage of the modal approach

Conventional theoretical approaches are not adequate for describing nonlinear wave
interactions:

(i) It is implicitly assumed that the nonlinear interactions remain the same and adjust
adiabatically, what requires the characteristic scale of nonlinear interactions L, > ¢ 21 (¢=
ka ~< 0.1 is the wave steepness, A = 21t/k >~ 100 m is the wave length) be much smaller
that the scale of inhomogeneity L, ,: L., >>L, > 10 km.

For the kinetic nonlinear scale L,;,, > ¢ */ the conditionis L, , >> L,.. > 1000 km.

(ii) Wave refraction occurs in x-space, while nonlinear interactions ‘live’ in the k-space.

If the jet currentis longitudinally uniform, then the solutions to linearized equations of
hydrodynamics for water waves may be always presented in a separable form: as waves
propagating along the current with some ‘'modal’' dependence on the vertical and
transverse variables.

Trapped modes differ qualitatively from the
free waves. This fact profoundly changes all "
aspects of their nonlinear dynamics. N <




Modulational instability of oceanic waves

There is crucial difference in wave statistics between the 1D evolution and 2D
evolution [Onorato et al, PhysFI’'02, PRL'09; Waseda, 06; Gramstad & Trulsen, JFM’07,

Mori et al, JGR’07].
! ] The weakly nonlinear theory for long wave

[Muller et al, 2005] modulations employs the assumptions of small wave
steepness k,a = O(¢), << 1 and narrow spectral
bandwidth Ak/k, = O(¢). The coefficients of the
evolution equation are functions of the scaled water
_ depth kyh.
~~ The nonlinear Schrodinger equation (NLS) for the
sl = complex wave envelope A(x,t) takes into account the
™ o leading-order terms of nonlinearity and dispersion. In
. the deep-water limit of the planar geometry it reads

2 2
i6A+a)08A+a)028A ka‘A‘A 0
ot 2k, ox ) 8k, ox’

The surface displacement 77(x,t) can be calculated using the reconstruction formula 7(x,t) = Re[A
exp(iw, — kot)], where @, = w(k,) according to the dispersion relation.

@ OMshore structure

The NLS equation is integrable by means of the Inverse Scattering Transform (IST). Higher order
generalizations of the evolution equation may be derived, which are not integrable.

[Benney & Newell, 1967; Zakharov, 1968; Hasimoto & Ono, 1972; Zakharov & Shabat, 1972]



Modulational instability of oceanic waves ’

There is crucial difference in wave statistics between the 1D evolution and 2D
evolution [Onorato et al, PhysFI’'02, PRL'09; Waseda, 06; Gramstad & Trulsen, JFM’07,
Mori et al, JGR’07].

The 2+1D NLS for deep-water gravity waves
possesses the property of focusing for longitudinal
modulations and de-focusing for transverse

[Muller et al, 2005]

] modulations.

@ OMshore structure



Modulational instablility of oceanic waves

Development of the modulational instability

10



Modulational instability of oceanic waves

There is crucial difference in wave statistics between the 1D evolution and 2D
evolution [Onorato et al, PhysFI’'02, PRL'09; Waseda, 06; Gramstad & Trulsen, JFM’07,
Mori et al, JGR’07].

The 2+1D NLS for deep-water gravity waves
possesses the property of focusing for longitudinal
modulations and de-focusing for transverse

[Muller et al, 2005]

=) - modulations.
e ” f 19, T 49«4 yy +2 ‘q‘ q= 0
The idea is:

Waves trapped by jet currents =>
described in modal representation

Effectively unidirectional nonlinear wave evolution

Increase of rogue wave likelihood
due to nonlinear self-modulation effects

Currents: Smith‘70; Peregrine&Smith‘75; Basovitch‘81; Edge waves: Dubinina et al,'05, ‘06; Pelinovsky et al,'10



Asymptotic modal theory
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Basic equations

Euler equations for incompressible ideal fluid
with the current ’7 _ (’[(V‘

and flow velocity components associated with
the wave motlon (
u+l/.

Water bulkz< 77

2‘; (U+vV)(U+v)+VP g
v ([0+7)=0 mhp X Y Mg

Ox 8y 0z
SurfaceBCz=17:
P=0 at z=n

EZZ (U+VV)77 w at z=n

Bottom BC :

w—=>0 when z-— —©



Linear modal theory 14

Waves propagate predominantly along the Ox horizontal axis opposite to the current
with the longitudinal wavenumber k > 0 and frequency .

The small parameter £<< 1 which has the meaning of the wave steepness will
characterize weak nonlinearity of the wave motions.

Hydrodynamic fields taking into account
the leading-order (linear) wave
perturbations O(g):

Surface displacement:
n(x, y,t) = ed(y)expliwrt — ikx)
Wave velocity components:
u(x, y,z,t) = sily, z)expliot — ikx)
v(x,y,2,t)= ey, z)explior — ikx)
w(x, y,z,t)= oMy, z)expliwrt — ikx)

Excess pressure with respect to the rest condition:

P(x,y,z,t)=&P(y,z)expliot —ikx) - gz




2D BVP

The governing equations may be reduced to the 2D boundary value problem (BVP)
following either of the two approaches:

1) The velocity components may be expressed in terms of the pressure from x-, y- and
z-projections of the Euler equations. Then, the continuity equation yields the BVP on

the pressure.
2) Combinations of derivatives of the Euler equation projections of the form

0 0
— Euler, ——Euler, EEulery —iEuIerZ

0z OX 0z
may be used to obtain the BVP (of a slightly different form) on the vertical velocity.

The second method yields the 2D nonlinear BVP on the function ®(y,z) and
eigenfrequencies @ assuming that the longitudinal wavenumber k is given:

2 2 " 12
8?+8?+ 2 _292 ~k?|®=0(s) for z<0
ora @y Q Q

oD O The function ®(y,z) has similarity with

—=_"0+0 for z=0 i ial: . oD
iz g (&) the velocity potential: W(y, z)= <
®—>0 for z——w The function Q)(y) = @ — kU(y) characterizes

the local Doppler shift.
First appeared in [Basovitch1981]
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Reduction to 1D BVP

The 2D BVP may be solved numerically, treating the condition in the water bulk as a
weakly perturbed Helmholtz equation: 52 2 " 12
yp q O’ D kch:_(g L0 jq) or 7<0

072 ayz_ 0?2
2

aE:Q_ for z=0

oz (g

d—->0 for z—> —0

The 2D BVP may be reduced to 1D BVP under some extra assumptions like weak

max |U
current (y<< 1) or broad current (x << 1), where ~ , _ - U | (KL, )

ph

An approximate separation of variables is implied:
Q’ oF
o(y,2)=F(y,z)z(y.z)  Z(y,z)=exp zF <

If the current is absent, then Z = exp(za#?/g), F = exp(ik,y), and we have the linear
dispersion relation for deep-water waves: @* =g?(k* + kyz).

0°F (Q°
Y +£g2 —kszzO()/,u)

If y11<< 1, the dependence of F on z may be neglected: F(y,z) = Y(y).

(the latter condition is to
satisfy the surface BC)

z=0

Then, in the domain | kz| ~< 1 we obtain




1D BVPs v

Waves propagate predominantly along the Ox horizontal axis opposite to the current

with the longitudinal wavenumber k and frequency . Within the linear

approximation, boundary-value problem (BVP) may be formulated for the wave

structure in the transverse direction Oy [Shrira & Slunyaev, JFEM2014]:

Assumption of a broad current |
2 2

@l =0

g

Q(y)=w-kU wg:\/g7

Decaying and non-decaying conditions at y — to©
specify trapped and passing-through modes, respectively. Eigenfrequencies w and
eigenfunctions Y(y) determine the modes. One eigenvalue corresponds to one
eigenmode. Trapped modes correspond to the discrete spectrum which may exist only
for opposite currents, kU < 0, and may have the values @, + min(kU) < o < @,.
Eigenfunctions are generally not orthogonal.

Assumption of a weak current (Sturm-Liuoville BVP)
a’y k’
—+ 4" (0—(0, +kU )V =0
dy o,
Eigenmodes of the Sturm-Liouville (SL) problem form the full orthogonal basis.
At least one trapped mode exists if kU < O for all y.

First appeared in [Peregrine & Smith, 1975]



Dispersion relations for modes

“f sech-squared
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k

d
-y
u.1'l
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For some particular shapes of the jet
current the dispersion relations (solutions
of the Sturm-Liouville problem) can be

found analytically.

max|U| =2 m/s,

characteristic width of the jet is 200 m

parabolic

001 002 003 0.04 005 006 007 008 009

k

0.1

top-hat

001 002 003 004 005 006 007 008 009
k



Weakly nonlinear theory:

1) three-mode Interactions



Allowed nonlinear wave resonances

Three-wave resonant conditions become possible for waves trapped by jet currents, if

one of the waves is sufficiently long or the current is sufficiently strong.

Resonant conditions for a mode triad:
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Resonant conditions for quartets of modes are allowed too.

20



3-wave interaction theory 21

Assuming that the effect of nonlinearity is small, we introduce the parameter << 1
and use the asymptotic series for all hydrodynamic fields,

P(x,y,2,t)=—gz+p® +£2p®@ +... u(x,y,z,t)=au® + £2u® + ..
n(x,y,t)=en® + @ + . v(x,y,z,t)=ev® + £2v? 4.
w(x,y,z,t)=aw® +&°w® + ..

To allow the mode evolution and to account the large lateral scale of the current and
related fields, we use slow time and coordinates: t — t, + &t, x > Xy + &X, Y = Yo +
&y,. At this stage one has to set relations between small parameters and scales. It is
more convenient to derive the nonlinear theory for the variable of pressure.
After calculations, the equation in the nonlinear order O(£?) for mode Y,(y,) (for a
broad current the dependence of modes on y is fast) has the form:

Ry v, By ig? hpy ( (a)Y’Y'+01b)Y Y, PP+
ot, tOX, Q]
w0, . Py + Zm”’P” Y, "l=0
nonlinear correction o' slave mode
~ d2y o* to the mode structure
L[k, Q]Y = > + — k2 Y (faster attenuation with depth)
dyo 9 g 2k —
operator of the BVP Vj +U QZ = le +Q§ +Q§

20)°



3-wave interaction theory 22

The evolution equation on the amplitude A,(x,t) of three resonantly interacting modes
may be written in the simplest form as

OA  GOA i ey K. +k.+k k. <
—1p A A =0
Gt 8X w. + w. + a - <
J.V Y12 dy _[ PY1Y,Y,dy 2
v _ _20,(03+03)07 -0,0,) | 4kk070,0, — (k.05 +k,03)
2 N . 9°Q’ 20,0,0,0
IY dy _.[Yl dy Q=02 +Q5+Q}

The equations on modes A, and A, are obtained by permutation of the indices (1,2,3).
The derivation of this theory is not potential, but the resulting equation coefficients do
not depend on vorticity. The nonlinear interaction coefficient is valid for strong
currents. The 3-wave system is completely integrable.

In the limit of a weak current ¥<< 1 (one of the wave is very long) the equation on the

short wave reads:
Y, ..Y.Y.d
oA G OA LB AL A =0 I_IOOLW”V
81: ax 1 0
? 2
v, =2 flwgu +o(72):\/zgf+u +0(y?) ﬁl=%|l+0(7/) .2y
o) oo

3-w nonlinear effects weaken



Weakly nonlinear theory:

4 — four-mode Interactions



4-wave interaction theory -

The picture of possible nonlinear interactions between

quartets of modes is rich. Under the assumption of a weak k1 T kq — k
current, the potential theory for water motions may be used, w. + . = @
what greatly simplifies the derivation. 3
%) a;=a;l, « = 1p2 I = —J;JYj v
A . 2 —~ Sz L Ty
io, "t =g|A]'+ Y a 44 [rra
- + 1 ]
k. w
. aAz L 9 o k_J ecuu  k, >k, J‘ Y2Y2dy
10, ——==0a,4, Az‘ T V &, 'Az‘ Do =200 1 lg==—
-~ d ]/ k 2
&A , k—q ecu  k; >k, Jdey
i0)3 T3 = 53143 A3‘ + 253 ].A3‘ agrees with LJavrova (1983)
aA 2 a. <2a. J-YIY2Y3Y4dy
o 4 = —_— Jq J e
io,—*=a@A\A[ + Y a4 Ji=

v, =v (kky ke ke, )T ijzdy

0.6

0.4

0.2




4-wave Interaction theory

The picture of possible nonlinear interactions between
guartets of modes is rich. Under the assumption of a weak k4 T kq — k
current, the potential theory for water motions may be used, w. + . =

what greatly simplifies the derivation. 3
Y ‘dy
a =ol. a:lkz ,:—J;’J
8A1 ] 1) 7o IJ o
_ZAAP s Yz friey
o, =aAAl+ Y&A - =
] aAZ o 5 o k—’ ectu K, >K; jY Y Zdy
o, —==a,A Az‘ ™ FaziAz‘ g =20t qy T o =
oA : N
|0)3 - = ESAS A3‘ + 253 i A3‘ agrees with Ljavrova (1983) B
- aA 2 a., <2, IY1Y2Y3Y4dy
o, —=a,A|Al + Y a, A o ==
4~ Al A +if vo=vikokokok ), v 2y

Example of a top-hat current

1, -:0 I" J:q 8
|j{3 | |jq_{’ | J,=0 mmp a\Aj\z:o
4




NLSE for one trapped mode 20

The nonlinear Schrodinger equation (NLSE) for a single mode accounting for 4-wave
nonlinear interaction within the non-potential theory for a broad current reads

aw — 62
( ot ij Tl =0 <-
TVdey Tgyr‘d T pY%d <
_ _ = 2 <
V=== a=— b=
fra frd fra
sy ket obnt skt 20 _ o3k -24?) Q" - g
20° 12h° sh*

The equation describes a mode with frequency @ and corresponding mode Y(y).
The coefficients are valid for a broad but may be strong current.

The coefficients may be further simplified assuming that the V(y),
slower functions of the transverse coordinate than the mode Y(y).

a(y) and f(y) are

In the limit of a weak current the coefficients are greatly simplified too, and the
potential theory may be applied.



27

NLSE for one trapped mode

The nonlinear Schrodinger equation (NLSE) for a single mode accounting for 4-wave
nonlinear interaction was presented in [Shrira & Slunyaev, PRE2014] (derived within

the potential framework): z
5!/ 81// 2 y
+V 0 <
( ot Ox j M - ' \
j UY>dy ~ < x
I7 lki 5(7 rT —0 \"'
2 2 U - < ¥y ,'J}.I é
IY2dy
o e " Y'd
P = T=al q=NEK L d
2 ) Y’dy

The coefficients are valid for a weak current.
The corresponding surface displacement reads:

(e, ,1) = %y/(x,t)y(y)exp(l-wt _ike)+cc.

The general solution may be represented in the form of mode superposition relying on
the orthogonality property of the Sturm-Liouville problem eigenfunctions.



Numerical scheme



Equations of hydrodynamics ~

We simulate homogeneous inviscid water of the constant density under the action of

gravity force. The basin is infinitely deep.
The jet current flows along the Ox horizontal coordinate and depends on the

transverse coordinate y only: U=(U(y),0,0).
The fluid motions are assumed to be potential, so that the velocity v = (u,v,w) =

U+ Volx,y,zt). At the free surface z = 7(x,y,t) the surface velocity potential is defined
by ®(x,y,t) = px,y,z=1,t).

7, +(VO+U)-Vy—wll+(VyF)=0, z=p

CDt+g77+%(V(D+U)2—%W2(1+(V77)2)+P=0, z=7 ; ke

Vp=0, z<n

p—>0, z—>-©

_39(x,2,1)
Oz

d)zgo(X,y,Z:Uaf)‘ w(x,y,t)

z=n(x.t)



Rest conditions =

When waves are absent, ¢ = 0, the stationary condition with zero elevation, 7=0, is
supported by inhomogeneous distribution of the pressure on surface:

— |
P=P+P, P=—|u
2
The atmosphere pressure is assumed to be zero, P, = 0.

Integrals of motion

Mass M = J.:ndxdy = Const

Flux F= :ntdxdy = Const

Momentum P= :77(U + VCD)dxdy

Energy E=W"'+w? +j.Adt = Const
0

Wk:%”[(l)nt+77\U\2—CDU-V77 dy Wp:%”[gﬂz]dxdy A:jjﬁmdxdy



Numerical approach 4

The High Order Spectral Method [West et al., 1987] has been modified to simulate the
problem. Within this approach the problem with variable surface is replaced to the
one with the upper boundary defined by the rest water level 77 = 0. The velocity
potential is represented in the form of a linear superposition of the analytic solutions
of the Laplace equation with decaying condition at great depths and specified values
at the water rest level ¢(x,y,z=0,t). The surface velocity potential ®(x,y,t) and the
vertical velocity on the water surface w(x,y,z=n,t) are related to the values ¢(x,y,z=0,t)
using the Taylor expansions near z=0 of the order M.

M k _(m—k)
p=Y o™ oV = @ 277 0 ¢

m=1 2=0

Velocity potential

Vertical velocity

M m-1 .k 6k+1 (m—k)
w=) wm wm =312 7
— k! oz

The boundary conditions are periodic along Ox and Oy.

The simulations were performed for M = 3 and M = 4 (up to 4- and 5-wave interactions
were resolved).

The maximum deviation of the total energy is below 0.05%.



Results of numerical simulations



Examples of regular and modulated waves

Modulational instability of a weakly
modulated trapped wave
(fundamental mode)

S
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DNS of a uniform trapped wave
(fundamental mode)

Terminal stage of the modulational instability
leading to wave overturning
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Ini. condition — Envelope soliton of trapped wave¥

The nonlinear Schrodinger equation possesses exact solutions in the form of envelope
solitons:

k*A k“a’
exp[i o I 2a)tj exp[i 4a)tj 2
Ve (X, 1)= A ‘=% |

Y 4dy
, , \ — <
cosh(v2k?Al(x=Vt)) I cosh(v2k?a(x—Vt)) | Y'dy

Mes (X, Y, 1) = %w(x,t)Y(y)exp(i wt —ikx )+ C.C.

o dispersive  sq/c

D (X, y,t):%w(x,t)Y(y)exp(iwt—ikx)+c.c. & spreading

’7700,0/
: e, S w,
The idea is that: W % %

i) the self-modulation effect is not relaxed @
due to the transverse wave de-modulation;
coherent structures like solitons live longer;
ii) long-lived coherent structures result in :
greater probability of high waves.

Example of a soliton of fundamental mode 1 im0
with the steepness kA = 0.2

1



Envelope solitons on jet currents

The initial conditions according to the weakly
nonlinear analytic theory are simulated
within the Euler equations (HOSM)

Fundamental mode (n = 1)

Firth mode (n = 5)
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The jet current in the numerical simulations

A periodic current shape is used to fit B , y
the periodic boundary condition: U (y) =U,cen {ZK L— S
y

where K(s?) is the complete elliptic integral of the first kind with the parameter s = 0.9;
the current speed is U, = -2 m/s.

The current and modes for k = 0.05 rad/m (left) and k= 0.1 rad/m (right):



Interaction between solitons of fundamental modé&

k,=0.05rad/m, k, =0.1 rad/m, kA, = k,A, =0.2.
Wave periods according to the solution of the SL problem: T, =10.3s, T, =7.9s.
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Sturm-Liouville BVP for k = 0.05 rad/m



Interaction between solitons of fundamental mod&

.3 02 -0 ] 0.1 02 03

| Small-amplitude waves are generated by the
inaccurate initial condition and in the course
of the soliton collision.
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In these surface snapshots the displacements
are 10 times magnified.
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Interaction between solitons of different modes

k,=0.05rad/m&n,;=2,k,=0.1rad/m &n, =1, k;A; = k,A,=0.2.
Wave periods according to the solution of the SL problem: T, =10.0s, T, =7.9 s.
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Interaction between solitons of different modes

k,=0.05rad/m &n,;=3,k,=0.1rad/m &n, =1, k;A; = k,A,=0.2.
Wave periods according to the solution of the SL problem: T, =9.8s, T,=7.9s.
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Maximum displacements !

The maximum displacements as functions of time in the simulations of interacting
solitons and in reference simulations of single solitons.
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Degenerate 2-soliton NLSE solution 1

The solution [Peregrine, 1983; Akhmediev & Ankiewicz, 1993] describes interaction of
two NLSE envelope solitons with identical amplitudes and velocities.

. .fsinh.f—(1+'2k2a2a)tjcosh§ ey
‘//deg(x’t):4_ 1 e §:ﬁk2a(x—Vt)
| cosh2§+1+2§2+2k4a4a)2t2

The solution tends to two envelope solitons with amplitudes A = a/l when t — +o0 and
reaches at most twice larger amplitude 2A at t =0 and x = 0.

This is the longest possible interaction
scenario for two solitons, which
should reveal non-integrable features
of the interaction.
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Degenerate 2-soliton solution: simulation 2

: k=0.05rad/m &n =1, kA = 0.15.
The wave period according to the solution of
the SL problem: T=10.3s, V=4.98 m/s.
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Energy of the fundamental mode is partly
transferred to other modes due to the
imperfectly elastic collision
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Degenerate 2-soliton solution: simulation

|H{b,}| The numerical simulations of primitive
equations reproduces the stages of
solitons’ approach, generation of
large-amplitude waves and then
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Conclusions g

0 Trapped wave conditions represent a unique situation of surface water waves when the
defocusing effect in the transversal direction is cancelled. Then the requirement on the
small width of the angular spectrum for modulationally unstable waves is greatly relaxed,
what can cause higher probability of rogue wave generation in ordinary sea conditions.

@ The NLSE envelope solitons are structural elements of the coherent nonlinear wave
dynamics which are involved in the modulational instability scenarios related to the
generation of rogue waves. These long-lived groups exhibit own non-trivial dynamics; its
understanding may be used for elaboration of warning criteria.

9 We show that the dynamics of waves trapped by jet currents may be effectively
described within the mode approach, which allows the formulation of simplified theories,
including approximate analytic solutions. Modes can preserve energy for hundreds of wave
periods.

@ Envelopes solitons of trapped waves are stable structures, which can propagate for
hundreds of wave periods with no noticeable loss. They interact to a great extent elastically
and may cause rogue waves.

6 A number of specific physical mechanisms related to adiabatically slow or rapid
variation of the surrounding conditions may be suggested as possible mechanisms of wave
amplification and generation of rogue waves.
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V.I. Shrira, A.V. Slunyaev, Nonlinear dynamics of trapped waves on jet currents and rogue waves. Phys. Rev. E. 89, 041002 (2014).
A.V. Slunyaey, V.I. Shrira, Extreme dynamics of wave groups on jet currents. Physics of Fluids 35, 126606 (2023).



XXI HayuyHas wkona «HEJIMHEUHBIE BO/THbI — 2024»
Hu»XHuit Hosropog 5 — 11 HoAbpa 2024 r.

OPTAHU3ATOPDI
UHCTUTYT npuKknagHon ¢éusmkm nm. A.B. lanoHosa-lpexosa PAH, HuxxHuin HoBropopa
Hu»xeropoackuii rocygapcTBeHHbI yHUBepcuteT nm. H.U. JlobaueBckoro

TEMATUKA LLUKO/1bI

CoBpeMeHHble npobaembl TEOPUM HENMHENHDBIX KONebaHMN 1 BONH
HennHenHble npouecchbl B reopumsmke

Moaenn KnnmaTa u SKOCUCTEM

HennHenHble ABNEHMA B KOCMOJIOTUKM U acTPodU3nNKe

HennHenHaa ¢oToHUKaA

HenuHelnHble ABneHnA B GU3NKe NNA3Mbl U SNEKTPOHUKE
HennHenHble npoueccbl B 6ModpU3nKe n HempoanHammuKe
HennHenHasa guHamunKa KBAHTOBbIX CUCTEM

Mpuem 3aaBoK Ao 9 ceHTabpsa 2024 r.

http://nonlinearwaves.ipfran.ru
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